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Motivated by the recent numerical evidence �Z. Meng, T. Lang, S. Wessel, F. Assaad, and A. Muramatsu,
Nature �London� 464, 847 �2010�� of a short-range resonating valence bond state in the honeycomb lattice
Hubbard model, we consider Schwinger boson mean field theories of possible spin liquid states on honeycomb
lattice. From general stability considerations the possible spin liquids will have gapped spinons coupled to Z2

gauge field. We apply the projective symmetry group method to classify possible Z2 spin liquid states within
this formalism on honeycomb lattice. It is found that there are only two relevant Z2 states, differed by the value
of gauge flux, zero or �, in the elementary hexagon. The zero-flux state is a promising candidate for the
observed spin liquid and continuous phase transition into commensurate Néel order. We also derive the critical
field theory for this transition, which is the well-studied O�4� invariant theory �A. V. Chubukov, T. Senthil, and
S. Sachdev, Phys. Rev. Lett. 72, 2089 �1994�; A. V. Chubukov, S. Sachdev, and T. Senthil, Nucl. Phys. B 426,
601 �1994�; S. V. Isakov, T. Senthil, and Y. B. Kim, Phys. Rev. B 72, 174417 �2005��, and has an irrelevant
coupling between Higgs and boson fields with cubic power of spatial derivatives as required by lattice sym-
metry. This is in sharp contrast to the conventional theory �S. Sachdev and N. Read, Int. J. Mod. Phys. B 5,
219 �1991��, where such transition generically leads to incommensurate magnetic order. In this scenario the Z2

spin liquid could be close to a tricritical point. Soft boson modes will exist at seven different wave vectors.
This will show up as low-frequency dynamical spin susceptibility peaks not only at the � point �the Néel order
wave vector� but also at Brillouin-zone-edge center M points and twelve other points. Some simple properties
of the �-flux state are studied as well. Symmetry allowed further neighbor mean field ansatz are derived in
appendices which can be used in future theoretical works along this direction.

DOI: 10.1103/PhysRevB.82.024419 PACS number�s�: 75.10.Kt, 75.10.Jm

I. INTRODUCTION

Quantum ground state of a spin system without any spon-
taneous symmetry breaking, the so-called spin liquid, in two
or higher spatial dimensions, has been a subject of intense
research since it was first proposed more than thirty years
ago.1,2 These states, sometimes called resonating valence
bond �RVB� states, generically appear in two varieties, the
“short-range RVB state” with a gap to spin-carrying excita-
tions, and the “critical spin liquid” with gapless spin excita-
tions. Recently several candidate materials3–5 have emerged
for spin liquids in two spatial dimensions �2D�. Interestingly
they all have gapless spin excitations. Many parent Hamilto-
nians have also been constructed for spin liquids in 2D.6–9

However, it remains unclear theoretically whether a simple
and natural spin Hamiltonian, e.g., the Heisenberg model,
can have a spin liquid ground state on some 2D lattices. For
common bipartite 2D lattices, the square and honeycomb lat-
tices, quantum Monte Carlo �QMC� �Refs. 10 and 11� and
other calculations12–18 have clearly shown the long-range
magnetic order in the ground state of the nearest-neighbor
Heisenberg model. Therefore frustration is usually consid-
ered as an important ingredient for stabilizing the putative
spin liquid states.

In an exciting paper by Meng et al.,19 the half-filled Hub-
bard model on honeycomb lattice Eq. �1� was carefully stud-
ied by quantum Monte Carlo calculations. The model simply
consists of hopping of electrons on nearest-neighbor bonds
�ij� and onsite repulsion between two spin species labeled by
�= ↑ ,↓

H = − t �
�ij�,�

�ci�
† cj� + cj�

† ci�� + U�
i

ni↑nj↓. �1�

Varying the only parameter in the problem, the ratio of onsite
repulsion U�0 and electron hopping t, three different phases
were observed. With small coupling U / t�3.5 the system is a
semimetal with Dirac-type dispersion. For large coupling
4.3�U / t the system develops long-range magnetic order. In
the intermediate coupling region 3.5�U / t�4.3 a very inter-
esting state with both single-particle gap and spin gap ap-
pears. Various symmetry-breaking scenarios were checked in
this state and then ruled out. It was thus concluded that this
state is a genuine short-range RVB state.

This is somewhat surprising considering both weak- and
strong-coupling limits. Starting from the weak-coupling
limit, with the single-particle gap develops continuously as
observed in the calculation,19 it was expected that the spin
dynamic will either inherit the gapless nature of the small U
semimetal phase,20 or develop certain kind of spontaneous
symmetry breaking.

In the strong-coupling large U→+� limit the low-energy
Hamiltonian is the nearest-neighbor spin-1/2 Heisenberg an-
tiferromagnetic �AFM� model whose ground state has long-
range colinear Néel order11 and must have gapless spin-wave
excitations as Goldstone modes. Indeed a magnetic order
was seen in the strong-coupling region 4.3�U / t in the nu-
merical simulation.19 Moreover the magnetic-order param-
eter and spin gap seem to both vanish continuously at the
critical point U / t�4.3. This raises the hope to understand
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the observed short-range RVB state, at least in the large U / t
part of the parameter range, by going from the strong-
coupling side. Although the conventional wisdom21,22 is that
such continuous quantum phase transition between colinear
magnetic order and gapped spin liquid is impossible.

In the strong-coupling regime, with single-particle gap
much larger than the spin gap �zero in magnetic ordered
phase�, it is reasonable to describe the low-energy physics by
an effective spin-1/2 Hamiltonian, which can be derived
from the Hubbard model and should be23 �up to t4 /U3 order�

Hspin = �
�ij�

	4t2

U
−

16t4

U3 
Si · S j + �
��ij��

4t4

U3 Si · S j + ¯ , �2�

where ��ij�� are next-nearest-neighbor bonds. As the short-
range RVB region is still close to the single-particle gap
opening transition �Mott transition�, the spin Hamiltonian
should be much more complex than this leading-order
Heisenberg model, i.e., have strong couplings of further
neighbors and/or four and even more spins. Solving the exact
spin model will likely not be easier than solving the original
Hubbard model. In this paper we take a different approach.
Using symmetry analysis we completely classify all possible
stable gapped spin liquid states within the Schwinger boson
formalism. It turns out that there are only two relevant states,
differed by the gauge-invariant flux, zero or �, in a hexagon.
Some signatures of these two spin liquid states will be de-
rived which may be checked in numerical simulations. The
zero-flux state turns out to be a very promising candidate for
the observed short-range RVB state. We obtain a mean field
“phase diagram” �Fig. 1� for it in terms of a variational pa-
rameter, which could qualitatively agree with the behavior of
the Hubbard model close to the magnetic transition. Our
symmetry analysis fixes symmetry allowed forms of further
neighbor mean field couplings, which will be useful for later
theoretical studies of spin liquids on honeycomb lattice.

The outline of this paper is as follows. In Sec. II we
briefly describe the formalism of Schwinger boson mean
field theory. In Sec. III we apply the projective symmetry
group method developed in Ref. 24 to classify all Z2
Schwinger boson states on honeycomb lattice. Details of the
derivation are presented in Appendix A. Two out of 32 pos-
sible Z2 states are particularly relevant here and we derive
the mean field ansatz up to fourth neighbors in Appendix B.
In Sec. IV we study some simple properties of the two Z2
Schwinger boson states emerged from the projective symme-
try group �PSG� analysis. And we derive the continuum-field
theory for the transition from the zero-flux Z2 spin liquid to
the Néel order in Appendix C. Conclusions and outlook of
further developments are summarized in Sec. V.

II. SCHWINGER BOSON MEAN FIELD THEORY FOR Z2

SPIN LIQUIDS

A microscopic theory of spin liquid usually involves frac-
tionalized spin-carrying particles, the spinons, which are
strongly coupled to certain emergent-gauge field.21,25–27 It is
generally believed that, when the spinons are gapped, the
system is stable only if the gauge field takes discrete

values22,26 �some exotic counter-examples exist such as the
doubled Chern-Simons model of Levin and Wen28 but will
not be considered here�. The natural candidate of such dis-
crete gauge field for short-range RVB state is the Z2 �Ising�
gauge theory.29 Thus throughout this paper we will assume a
Z2 spin liquid state on the honeycomb lattice without break-
ing of any physical symmetry.

There are several serious problems of the Z2 spin liquid
assumption in the context of the QMC result.19 First if the
magnetic-ordered phase is continuously connected to a Z2
spin liquid, it will usually be noncollinear and
incommensurate,21 unlike the observed commensurate Néel-
type order. However, it will be seen later in this paper that
this expectation is not correct on honeycomb lattice. Also it
seems that the possibility of noncollinear magnetic order has
not been carefully checked in the paper by Meng et al.19

Thus we believe this argument against a Z2 spin liquid ex-
planation may be circumvented. The second problem is the
claim made by Meng et al.19 that topological degeneracy was
not observed while a Z2 spin liquid on a torus should have
fourfold-degenerate ground states. But it was acknowledged
that their numerical method might have missed the degener-
ate ground states in other topological sectors. Despite this
uncertainty we believe that it is still meaningful to thor-
oughly study the possibilities of Z2 spin liquids on honey-
comb lattice.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5

0 0.5 1 1.5

<
n>

M
F

=
2S

A2/A1

zero-flux Z2 spin liquid

Neel order incommensurate order

1

1.2

0.4 0.5 0.6

FIG. 1. �Color online� Mean field phase diagram of the zero-flux
state. Horizontal axis is the variational parameter, ratio between
next-nearest-neighbor and nearest-neighbor mean field couplings,
A2 /A1. Vertical axis is the average boson density �n̂�MF. The dash
line �n̂�MF=1 indicates the boson density of spin-1/2 system. Solid
lines are phase boundaries. The red solid line between the zero-flux
Z2 spin liquid and the Néel order is a continuous transition de-
scribed by the field theory Eq. �22�. The vertical solid black line
between the two ordered states is a first-order transition. The blue
line between the Z2 spin liquid and the incommensurate magnetic
order has yet to be studied but is likely a continuous transition.
There is a very small parameter range of 0.493�A2 /A1�0.516
�see also the inset� such that a spin-1/2 system will be a gapped Z2

spin liquid, which is a promising explanation of the observed spin
liquid �Ref. 19�. The variational parameter A2 /A1 can, in principle,
be tuned by physical parameters. For example, as argued in Sec. IV,
increase in U / t will decrease A2 /A1, which can drive a continuous
magnetic-ordering transition at the crossing point �black dot� of the
dash line and the red solid line.
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Another issue for the Schwinger boson formalism is that
it is not convenient for the description of the seemingly con-
tinuous Mott transition around U / t�3.5 in the numerical
results.19 We will refrain from considering that parameter
range in this paper and strictly limit ourselves in the strong-
coupling region with large single-particle gap.

To continuously evolve from a magnetic ordered state to a
Z2 spin liquid with spin gap, a natural approach is to decom-
pose each spin into two bosonic spinons, the Schwinger
bosons.21,25,26 The magnetic-ordering transition then be-
comes the condensation of these bosons.21,25,26,30 And a
large-N Sp�N� generalization has been formulated to study
the problem in a controlled 1 /N expansion.21,25,26 It is also
possible to get a gapped Z2 spin liquid from fermionic
spinons27 but that scenario will not be considered in this
paper. In this paper we will not use the Sp�N� language but
the PSG analysis can be directly applied to the large-N
theory.

In the following we briefly recall the formulation of the
Schwinger boson mean field theory. More details can be
found in, for example, Ref. 30.

The bosonic representation of spin Si on site i is

Si =
1

2�
�,�

bi�
† ���bi� �3�

with boson operators b, spin indices � ,�= ↑ ,↓, and Pauli
matrices �. For this to be a faithful representation of the spin
system a constraint on the total boson number must be im-
posed

n̂i � �
�

bi�
† bi� = 2S , �4�

where S is the size of the spin. For spin-1/2 model, S=1 /2,
the boson density should be unity. This hard constraint will
be relaxed in the mean field treatment so it is only satisfied
on average under the mean field state

�n̂i�MF = � , �5�

where � · �MF means expectation value in the mean field
theory, and the average boson density � can also be taken as
a parameter.30

Possible mean field decouplings of Heisenberg interaction
Si ·S j can be suggested from the operator identities �i� j�

Si · S j = − 2Âij
† Âij + �1/4�n̂in̂j

= − �1/4�n̂in̂j + 2B̂ij
† B̂ij = B̂ij

† B̂ij − Âij
† Âij , �6�

where Âij = �1 /2��bi↑bj↓−bi↓bj↑� and B̂ij = �1 /2��bi↑
† bj↑

+bi↓
† bj↓� are both SU�2� invariant.
A mean field theory for Heisenberg AFM model will gen-

erally include both Â and B̂ terms31–33

HMF = �
i,j

�Aij
� Âij − Bij

� B̂ij + H.c.� + �
i

	i�n̂i − ��

+ �
i,j

�Aij
� Aij − Bij

� Bij�/Jij , �7�

where Aij =−Aji, Bij =Bji
� are complex numbers called the

mean field ansatz and the chemical potential 	i is introduced
to achieve the average constraint Eq. �5�. For translationally
invariant states 	i=	 are uniform. And Aij�Bij� on symmetry
related bonds will have the same magnitude. Both A and B
terms have been consistently generalized to the theory of
Sp�N� magnets and the mean field Hamiltonian can be re-
garded as a saddle-point solution of the Sp�N� action after
Hubbard-Stratonovich transformation.34 Here we will not use
the Sp�N� language and we will regard the mean field theory
as a variational approach for general spin models even be-
yond Heisenberg model.

The mean field Hamiltonian can be diagonalized to solve
for boson dispersions. For small boson density � the bosons
will be gapped. Increasing boson density will cause boson
condensation at a critical boson density �c, which corre-
sponds to a magnetic-ordering transition and the details of
the magnetic order can be derived from the structure of the
boson condensates.30

For the Heisenberg model, the mean field ansatz can be
solved from the self-consistent equations

�Âij�MF = − Aij/Jij, �B̂ij�MF = − Bij/Jij �8�

together with the average constraint Eq. �5�. Self-consistent
equations for non-Heisenberg models can, in principle, be
derived as well.

As discussed in Ref. 24, for the emergent-gauge theory to
be Z2, it will need either both ansatz Aij and Bij, or only
ansatz Aij but with geometric frustration. Nearest-neighbor
ansatz A�ij� on honeycomb lattice is bipartite and will lead to
a U�1� gauge theory. Since the spin Hamiltonian Eq. �2� have
strong further neighbor couplings, it is natural to assume that
next-nearest-neighbor A��ij�� is nonzero, which is sufficient to
“Higgs” the U�1� gauge field into Z2.

III. PROJECTIVE SYMMETRY GROUP OF SCHWINGER
BOSON MEAN FIELD THEORIES ON HONEYCOMB

LATTICE

The mean field theory Eq. �7� is not invariant under the
local U�1� gauge transformations of the Schwinger bosons

bj� → ei
�i�bj�, � = ↑,↓ , �9�

where the phase 
�j� can depend on site j. The ansatz will
transform accordingly as

Aij → ei�
�i�+
�j��Aij, Bij → ei�−
�i�+
�j��Bij . �10�

However, the physical spin state is gauge invariant if the
constraint Eq. �4� is implemented exactly. Thus different
mean field ansatz may correspond to the same physical state.
Moreover the physical symmetries, e.g., the space-group
symmetry may not be explicitly present in the mean field
ansatz. And it is not straightforward to test whether a given
mean field ansatz actually conforms all the physical symme-
tries under the constraint Eq. �4�. It was first noted by Wen
and collaborators, in the studies of fermionic mean field
theories of spin liquids, that the mean field theory should
have a projective symmetry.35,36 Namely, the mean field an-
satz should be invariant under a combined physical symme-
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try group and gauge-group operation, a projective symmetry
group operation. The structure of the physical symmetry
group constrains possible structures of this projective sym-
metry group, thus constrains possible spin liquid states. This
idea was generalized to Schwinger boson states in Ref. 24
and applied to triangular and kagome lattices. Here we will
directly apply it to honeycomb lattice. More detailed discus-
sion of the formalism can be found in Ref. 24.

The honeycomb lattice and its space-group generators are
illustrated in Fig. 2. Sites are labeled as �x ,y ,w� with integer
x ,y indicating the unit cell at xa1+ya2, and w=u ,v indicates
the two sites in the unit cell.

The space group of honeycomb lattice is generated by two
translations T1 along a1, and T2 along a2, and a counterclock-
wise sixfold rotation C6 around the hexagon center �1/3�
�a1+a2�, and a reflection � around the horizontal axis
through the same hexagon center. Their actions on the lattice
are

T1:�x,y,w� → �x + 1,y,w�, w = u,v , �11a�

T2:�x,y,w� → �x,y + 1,w�, w = u,v , �11b�

C6:��x,y,u� → �− y + 1,x + y − 1,v�
�x,y,v� → �− y,x + y,u� 
 , �11c�

�:��x,y,u� → �x + y,− y,v�
�x,y,v� → �x + y,− y,u�
 . �11d�

We associate a U�1� gauge-group element, ei
X�j� depen-
dent on site j, to each element X of the space group, and
demand that the mean field ansatz be invariant under the
combined PSG operation

bj� → ei
X�X�j��bX�j��, � = ↑,↓ , �12�

where X�j� is the image of site j under the action of X. The
structure of the space group can be used for solving the al-
lowed phase functions 
X�j�. The solution is straightforward
and listed in Appendix A. In the end we have


T1
�x,y,w� = 0, 
T2

�x,y,w� = p1�x ,


C6
�x,y,w� = p1�

x�x + 2y − 1�
2

+
�p7 + p8 + p9��

2
,


��x,y,u� = p1�� y�y − 1�
2

+ x� + p5�y +
�p7 + p9��

2
,


��x,y,v� = p1�� y�y − 1�
2

+ x� + p5�y +
�p7 − p9��

2

�13�

with w=u ,v labels sublattice, and five free integer param-
eters p1 , p5 , p7 , p8 , p9=0, 1 mod 2. Therefore there are at
most 32 Z2 states. Requiring nonzero nearest-neighbor A�ij�,
which is natural for strong nearest-neighbor Heisenberg
AFM coupling, eliminates three parameters, p5= p1, p7=1,
and p9= p8. If next-nearest-neighbor A��ij�� is also nonzero as
discussed in the end of Sec. II, one more parameter can be
eliminated, p8=1, and we are left with only one free param-
eter p1=0 ,1. So there are only two relevant Z2 states with


T1
�x,y,w� = 0, 
T2

�x,y,w� = p1�x ,


C6
�x,y,w� = p1�

x�x + 2y − 1�
2

−
�

2
,


��x,y,u� = p1�� y�y − 1�
2

+ x + y� + � ,


��x,y,v� = p1�� y�y − 1�
2

+ x + y� . �14�

From the solutions of PSG one can construct all
symmetry-allowed mean field ansatz. The expressions of Aij
up to fourth neighbors and Bij up to next-nearest neighbor
are listed in Appendix B. The nearest-neighbor and next-
nearest-neighbor Aij are also illustrated in Figs. 3 and 4 for
zero- and �-flux states, respectively. In this paper the mag-
nitudes of nearest-neighbor �A�ij�� and next-nearest-neighbor
�A��ij��� are denoted as A1 and A2, respectively. The two states
are more intuitively distinguished by the gauge-invariant
flux37 in the elementary hexagon, defined as the phase of
Aij�−Ajk

� �Ak��−A�m
� �Amn�−Ani

� �, where the six sites

a1

a2

v

u
T1

T2
C6

σ

FIG. 2. The honeycomb lattice is shown on the left. Open
�filled� circles indicate the two sublattices. a1 ,a2 are primitive vec-
tors. For simplicity we assume the lattice constant a= �a1�= �a2�=1.
u ,v denote the two sites within one unit cell. The hexagon on the
right is the enlarged unit cell with schematic illustration of the
space-group generators, translations T1 and T2, sixfold rotation C6,
and reflection �.

u

v

v

u

FIG. 3. �Color online� The zero-flux ansatz. Left part shows
the nearest-neighbor ansatz. Single arrow from i to j means A�ij�
=−A�ji�=A1�0. All nearest-neighbor B�ij� must be zero according to
Appendix B. Blue dash rhombus is the unit cell of the mean field
theory, containing two sites u ,v. The large hexagon on the right is
the enlarged mean field unit cell showing the next-nearest-neighbor
bonds. Double arrow from i to j means A��ij��=−A��ji��=A2. All next-
nearest-neighbor B��ij��=+B2 are real according to Eqs. �B5a�–�B5f�.
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i , j ,k ,� ,m ,n are around a hexagon. For these two states this
flux is p1� so the time-reversal symmetry is also satisfied.

IV. Z2 SPIN LIQUIDS ON HONEYCOMB LATTICE

In this section we study, within the mean field treatment,
some simple properties of the two Z2 spin liquid states found
through the PSG analysis. For simplicity we will only use
nearest-neighbor A�ij�= �A1 and next-nearest-neighbor
bonds A��ij��= �A2 with A1 real positive. The � signs are
given in Figs. 3 and 4. Because the spin Hamiltonian is very
complicated, we will not compute energetics of these states
and will not derive/solve self-consistent equations of ansatz
A1 ,A2. Instead we will treat the ratio A2 /A1 as a variational
parameter and study the phase diagram with respect to it.
This parameter can, in principle, be tuned by, for example,
the J2 /J1 ratio in the nearest-neighbor next-nearest-neighbor
J1-J2 Heisenberg AFM model on honeycomb lattice, which
is proportional to �t /U�2 for small t /U �see, e.g., Eq. �2��.

Note that the J1-J2 Heisenberg model on honeycomb lat-
tice has been studied within a Schwinger boson formalism by
Mattsson et al.38 However, only the nearest-neighbor A�ij�
and next-nearest-neighbor B��ij�� were used. So that theory
has U�1� gauge field instead of Z2 and will be unstable. More
recently Cabra et al.39 studied a J1-J2-J3 model with J3=J2
using Schwinger boson mean field theory. They found a
commensurate colinear magnetic order with large J2 /J1,
which is different from the incommensurate order obtained
in the present paper with large A2 /A1 in the zero-flux state,
The small J2 /J1 region of phase diagram in Ref. 39 qualita-
tively agrees with our small A2 /A1 region for the zero-flux
state in Fig. 1.

A. Zero-flux state

The zero-flux Z2 spin liquid �Fig. 3� is a promising can-
didate for the numerically observed short-range RVB state. It
has gapped bosonic spinons coupled to Z2 gauge field. And it
has a continuous transition into the Néel order even with
small nonzero next-nearest-neighbor mean field coupling A2,

as long as A2�A1 /2. The continuum-field theory close to
this transition is derived following the method in Ref. 40.
The effective theory shows a nontrivial coupling of bosons to
the Higgs field involving cubic power of spatial derivatives,
which allows a direct transition from Z2 spin liquid to Néel
order. This is in contrast to the conventional theory of tran-
sition between Z2 spin liquid and magnetic-ordered state21

which will generically give a noncollinear incommensurate
magnetic order.

The unit cell of Fig. 3 contains two sites u ,v. Fourier
transform the bosons on each sublattice �w=u ,v�

b�x,y,w�� =
1

�Nunit cells
�
k

e−i�k1x+k2y�bkw�, �15�

where k1,2�k ·a1,2, the mean field Hamiltonian Eq. �7� be-
comes, up to a constant

HMF = �
k


k
†	 	12�2 A1P1 + A2P2

− A1P1 − A2
�P2 	12�2



k, �16�

where 
k is a four component field 
k
= �bku↑ ,bkv↑ ,b−k,u↓

† ,b−k,v↓
† �T �superscript T means transpose�,

12�2 is 2�2 identity matrix, and P1,2�k� are 2�2 antiher-
mitian matrices

P1�k� =� 0
+ 1 + ei�k1−k2� + e−ik2

2

− 1 − ei�k2−k1� − eik2

2
0 �

�17�

and

P2�k� = i�sin�k2� − sin�k1� + sin�k1 − k2��12�2. �18�

The mean field Hamiltonian can be diagonalized by a Bo-
goliubov transformation.30 The mean field dispersion has two
branches E�, each is doubly degenerate

E��k� = �	2 − A1
2f1 � 2A1RA2

�f1f2 − �A2�2�f2�2, �19�

where f1= �3+2 cos�k1�+2 cos�k2�+2 cos�k1−k2�� /4, f2
=4 sin�k1 /2�sin�k2 /2�sin��k1−k2� /2�, and RA2 is the real
part of A2. An example of the dispersion is shown in Fig. 5.

p
v

u

q

v

u

p

q

FIG. 4. �Color online� The �-flux ansatz. Left part shows the
nearest-neighbor ansatz. Single arrow from i to j means A�ij�=
−A�ji�=A1�0. All nearest-neighbor B�ij� must be zero according to
Appendix B. Blue dash rhombus is the doubled unit cell of the
mean field theory, containing four sites u ,v , p ,q. The large double
hexagon on the right is the enlarged mean field unit cell showing
the next-nearest-neighbor bonds. Double arrow from i to j means
A��ij��=−A��ji��=A2. All next-nearest-neighbor B��ij��= �B2 are real,
with the � signs given in Eqs. �B5a�–�B5f�. Red thick bonds are
those different from the zero-flux ansatz Fig. 3.

0

Γ T K M Γ

E

FIG. 5. The zero-flux mean field boson dispersion E� Eq. �19�,
with A2 /A1=1 /2 and average boson density �n̂�MF=1 �for spin-1/2
model�, along high-symmetry directions �-K-M-� �see Fig. 6�a��.
Note the very low-energy boson modes at T point.
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When the dispersion is gapped, E��0, the average boson
number ���n̂�MF is

� =� dk1dk2

4�2

1

2
� �	�

E+�k�
+

�	�
E−�k�� − 1. �20�

Since we want the system to be stable against magnetic or-
dering, we want to maximize its capability of containing
bosons. When A1 and magnitude �A2� are fixed, the above
boson density will be maximized if A2 is real. Therefore A2
will be assumed as real positive hereafter �real negative A2
case is related to real positive case by a gauge transforma-
tion�.

When A2�A1 /2 the dispersion minimum is at the �
point, �k1 ,k2�= �0,0�, in the Brillouin zone �BZ� �see Fig.
6�a��. With increasing boson density the bosons will finally
condense at the � point. Like in the triangular and kagome
case,24,30 the structure of the condensate can be determined
by solving the eigenvectors of Eq. �16� with zero eigenvalues
at the condensation momenta. Let �k1 ,k2�= �0,0� in Eq. �16�
and demand �one of� E� to be zero, we get �	 /A1�=3 /2 and
two eigenvectors �1,0 ,0 ,−1�T, �0,1 ,1 ,0�T corresponding to
the zero eigenvalues. Therefore the condensate at this mo-
mentum is a linear combination of these two vectors

�
k=�0,0�� = z1�1,0,0,− 1�T + z2�0,1,1,0�T. �21�

Complex numbers z1 and z2 determine the orientation of
staggered moments, as in the case of triangular lattice.30 De-
fine z= �z1 ,z2

��T, then the Schwinger bosons on sublattice
u�v� becomes �b��=z��b��= i�yz��. The moment on sublat-
tice u�v� is Mu= �1 /2�z†�z �Mv= �1 /2�zT�−i�y���i�y�z�=
−�1 /2�z†�z=−Mu�. This is the Néel order.

At A2 /A1=1 /2, the minima of dispersion jump to six T
points on the �−K�K�� lines with �k�=� �BZ corner K�K��
point has �k�=4� /3�. Further increase A2 /A1 to +� will
move the minima toward the K�K�� points �see Fig. 6�a��.

The boson condensation in this case will in general lead to
incommensurate magnetic order. Note that the A2 /A1=+�
limit is just two copies of decoupled zero-flux triangular lat-
tice Schwinger boson mean field theory.24,30

A mean field phase diagram in terms of the variational
parameter A2 /A1 and average boson density is constructed as
Fig. 1. There is a very small parameter range 0.493
�A2 /A1�0.516 where the critical boson density is greater
than unity, namely, the spin-1/2 system will remain to be a
gapped spin liquid. This is particularly promising for ex-
plaining the numerically observed transition from short-
range RVB to Néel state as U / t is increased. Because in-
creasing of U / t will decrease J2 /J1� �t /U�2, and thus
decrease A2 /A1, the spin-1/2 system will move to the left
along the dash line in Fig. 1, and cross the mean field phase
boundary between the zero-flux Z2 spin liquid and Néel or-
der.

In this scenario, the spin liquid will be very close to the
mean field tricritical point A2 /A1=1 /2 and �n̂�MF�1.18.
Therefore the momenta of low-energy bosons are not only
the � point but also the six T��k�=�� points in Fig. 6�a�. The
dispersion for A2 /A1=1 /2 and �n̂�MF=1 �spin-1/2� case is
drawn along high-symmetry directions in Fig. 5 to illustrate
this point. The dynamical spin susceptibility at low fre-
quency around the spin gap will have peaks at wave vectors
connecting two �can be the same� boson condensation mo-
menta, these include not only the � point but also three
Brillouin-zone-edge center M points, and these six T points,
and six other D points �Fig. 6�a��.

B. Critical field theory for the transition from zero-flux state
to Néel order

Considering the spatial-temporal fluctuations of the
would-be boson condensate z in the zero-flux state close to
the transition into Néel order, one can derive the critical field
theory. The detailed derivation is given in Appendix C. The
boson part of the Lagrangian reads

Lz =� d2r��D�z�2 + c2�Drz�2 + m2�z�2 + �3z���
j=1

3

�e j · Dr�3�z

+ c.c. + �H� · zT�i�y���
j=1

3

�d j · Dr�3�z + c.c.
 , �22�

where � is the imaginary time, r is the spatial coordinates,
��A2 is the scalar Higgs field, c.c. means complex conju-
gate of the previous term, and D is the covariant derivative
with minimal coupling to the compact U�1� gauge field com-
ing from the Schwinger boson representation. Vectors e1
= �2a2−a1� /3, e2=−�a2+a1� /3, e3= �2a1−a2� /3, d1=−a1,
d2=a2, and d3=a1−a2 are defined for convenience. The ve-
locity c and boson mass m and coupling constants �3 and �H
can, in principle, be derived from the microscopic theory.
Magnetic-ordering transition happens when the mass m van-
ishes.

The transformation rules of z and � fields under space-
group symmetry can be derived from the zero-flux �p1=0�
PSG Eq. �14�

(a)
K’

M

K

Γ
D

T

(b)

FIG. 6. �Color online� �a� Hexagon is the Brillouin zone of the
zero-flux ansatz. Central black dot is the � point �k1 ,k2�= �0,0�,
where boson condensation happens when A2 /A1�1 /2. When
A2 /A1 increases from 1/2 to +�, the boson condensation momenta
move along the red short lines, �� �k��4� /3, from T to K�K��.
The � point, three BZ edge center M points, six T points �filled red
circle, �k�=�� on �-K�K�� lines, and six D points �open blue dia-
mond, �k�=�3� /2� on �-M lines are the would-be magnetic Bragg
peaks for zero-flux spin liquid with A2 /A1�1 /2, namely, peaks in
dynamical spin susceptibility at low frequency around spin gap. �b�
Hexagon is the Brillouin zone of the original lattice. Dash rectangle
is the reduced Brillouin zone for the �-flux ansatz. In the �-flux
state, bosons can condense at the momenta indicated by the filled
red small triangles and produce magnetic Bragg peaks with possible
wave vectors indicated by the open blue small hexagons.
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T1,T2:z → z, � → � , �23a�

C6:z → − �yz�, � → � , �23b�

�:z → − i�yz�, � → � . �23c�

The Higgs field ��A2 transforms trivially. The Lagrangian
Eq. �22� is invariant under the PSG.

Note that the form of the coupling between bosons z and
the Higgs field � is constrained by the PSG, namely, the
microscopic lattice symmetry. It is very different from the
typical coupling21 which involves only one spatial derivative,
such coupling would violate the sixfold rotation symmetry
here. Naive power counting shows that this coupling here,
with cubic power of spatial derivatives, is irrelevant, which
means the Higgs field will dynamically decouple from the
bosons at low energy. Considering the anomalous dimen-
sions will not change this conclusion. This is why the Z2
state here still produces a commensurate Néel order upon
boson condensation in contrast to the conventional theory21

where it usually becomes a noncollinear incommensurate or-
der. However, the Higgs mechanism for reducing U�1� to Z2
is still intact, as long as the Higgs condensate ��A2 is
nonzero, providing stability against confinement in compact
U�1� gauge theory in 2+1 dimension. It would be very in-
teresting to see if the same critical field theory can be
reached from the Néel order side.

At the transition point, the low-energy theory is the O�4�
invariant critical theory for the transition between a spiral
magnet and a gapped spin liquid.41–43 The scaling properties
have been studied within large-N expansion41,42 and also
numerically.43 For example, spin-spin correlations will have
power-law scaling at large distance

�S�0� · S�r�� � �r�−�, �24�

where � has been numerically determined43 as �=1.373�3�.
This can be checked with the finite-size scaling results of the
Hubbard model when U / t is tuned to the magnetic ordering
transition.

C. �-flux State

Now we consider the �-flux state in Fig. 4. The unit cell
for the mean field theory is doubled along a2 direction and
contains four sites u ,v , p ,q. The Brillouin zone is halved as
shown in Fig. 6�b�. However, we stress here that the physical
spin state obtained from imposing the constraint Eq. �4� on
this mean field wave function has the original translation
symmetry of honeycomb lattice and this is guaranteed by the
PSG.

The mean field Hamiltonian after Fourier transform looks
like, up to a constant

�
k


k
†	 	14�4 A1P1 + A2P2

− A1P1 − A2
�P2 	14�4



k, �25�

where 
k is an eight-component field, 
k
= �bku↑ ,bkv↑ ,bkp↑ ,bkq↑ ,b−k,u↓

† ,b−k,v↓
† ,b−k,p↓

† ,b−k,q↓
† �T, 14�4 is

4�4 identity matrix, and P1,2 are 4�4 antihermitian matri-
ces

P1 =
1

2�
0 1 0 − �3

−1 + �2

− 1 0 − 1 − �1
−1 0

0 1 + �1 0 1

�3 − �2
−1 0 − 1 0

� , �26�

P2 =
1

2�
2i sin�k1� 0 1 − �2 − �1

−1 − �3
−1 0

0 − 2i sin�k1� 0 1 − �2 − �1
−1 − �3

−1

− 1 + �2
−1 + �1 + �3 0 − 2i sin�k1� 0

0 − 1 + �2
−1 + �1 + �3 0 2i sin�k1�

� �27�

with the short-hand notations �1=eik1, �2=e−ik2�, �3=ei�k2�−k1�,
and k1�k ·a1, k2��k · �2a2�. Note that k2� is twice of the k2 in
previous section.

The mean field Hamiltonian can, in principle, be diago-
nalized by a Bogoliubov transformation to give the mean
field dispersion. However, with A1 and A2 both nonzero this
is very difficult analytically. In the following we will set A2
to zero and present some results for the nearest-neighbor
ansatz. The mean field dispersion with only nearest-neighbor
ansatz has two branches, each is fourfold degenerate

E�
����k� = �	2 − A1

2�3/4 � �f�k�� , �28�

where f�k�= �3+cos�2k1�+cos�k2��−cos�2k1−k2��� /8.

Average boson density ���n̂�MF is

� =� dk1dk2�

4�2

1

2
	 �	�

E+
����k�

+
�	�

E−
����k�


 − 1. �29�

The critical boson density is achieved when �	 /A1�=�3 /2,
and �c=2.14�1. Taken at face value it means this state can
remain quantum disordered for spin-1/2 and even spin-1 sys-
tems.

The bosons will condense at four momenta in the reduced
Brillouin zone �see Fig. 6�b��, which are k= �kc1= � �k1
=� /6,k2�=−� /3� and k= �kc2= � �k1=−5� /6,k2�=−� /3�.
The condensate at each momentum will be
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�
k=+��/6,−�/3�� = z1V1 + z2V2, �30a�

�
k=−��/6,−�/3�� = w1V1
� + w2V2

�, �30b�

�
k=+�−5�/6,−�/3�� = z3V3 + z3V4, �30c�

�
k=−�−5�/6,−�/3�� = w3V3
� + w4V4

� �30d�

with complex coefficients z1,2,3,4 ,w1,2,3,4, and the complex
vectors V1 ,V2 are eigenvectors of Eq. �25� at kc1= �� /6,
−� /3� with eigenvalue zero, and V3 ,V4 are for kc2
= �−5� /6,−� /3�. The vectors V1,2,3,4 are explicitly given be-
low

V1 = �e−i�/12,0,�2 + �3,0,0,− e−i�/12�2 + �3,0,− 1� ,

V2 = �0,e−i�/12�2 + �3,0,− 1,e−i�/12,0,�2 + �3,0� ,

V3 = �e5i�/12�2 + �3,0,1,0,0,− e5i�/12,0,− �2 + �3� ,

V4 = �0,e5i�/12,0,�2 + �3,e5i�/12�2 + �3,0,1,0� . �31�

Note that z1,2,3,4 ,w1,2,3,4 may not be independent because one
need to make sure that the number of condensed bosons on
every site is the same.30

The magnetic order is complicated but will certainly not
be the Neel order. Because bosons have to condense at sev-
eral different momenta otherwise the condensed boson
density �size of the magnetic moment� would be nonuniform
on the four sublattices. Without knowing the detailed con-
densate structure we can still determine the possible mag-
netic Bragg-peak wave vectors, which are the differences
between two-boson condensation momenta. These possible
magnetic Bragg peaks are �k1 ,k2�= � �� /3+m� ,−� /3
+n�� , � �m� ,n�� with integers m ,n and are illustrated in
Fig. 6�b�. These momenta are accessible on 6�6, 12�12,
and 18�18 lattices used in the quantum Monte Carlo
study.19 So whether this �-flux state is realized can be tested
by measuring static spin structure factor at these momenta in
the magnetic ordered phase. The detailed magnetic order pat-
tern will be very nontrivial like that from the triangular lat-
tice �-flux state24 but will be left for future works.

We will not study the effect of the next-nearest-neighbor
coupling A2 in the �-flux state in this paper. We just note
here that with A2 /A1→�, the mean field ansatz Fig. 4 be-
comes two copies of decoupled �-flux states on the triangu-
lar lattice found in Ref. 24.

It would be interesting to realize this �-flux state in a
simple spin model on honeycomb lattice. However, for the
nearest-neighbor Heisenberg model general argument37 indi-
cates that zero-flux state will always have lower energy than
the �-flux state. Ring-exchange interaction �for the six sites
around a hexagon� may favor the �-flux state.24 However,
the natural sign of the ring-exchange coupling derived from
the Hubbard model will actually favor the zero-flux state as
discussed in Ref. 24. Thus the �-flux state is not likely real-
ized in the numerical simulation of the Hubbard model.19

V. CONCLUSIONS

In hope of understanding the numerical evidence of a
short-range RVB state found by recent quantum Monte Carlo
simulations of honeycomb lattice Hubbard model,19 and the
possibly continuous quantum phase transition from the short-
range RVB to the magnetic ordered Néel state, we studied
the Z2 spin liquids within the Schwinger boson mean field
theory. Applying the projective symmetry group method for
Schwinger boson states24 we completely classified possible
Z2 Schwinger boson spin liquid states on honeycomb lattice.
Symmetry allowed mean field ansatz are derived for up to
fourth neighbor couplings, which can be used for future stud-
ies of the Schwinger boson mean field theory. Assuming non-
zero nearest-neighbor and next-nearest-neighbor mean field
couplings A1 and A2, there are only two Z2 states on honey-
comb lattice which do not break any lattice symmetry. The
two states are differentiated by the gauge-invariant flux, zero
or �, in the elementary hexagon.

The zero-flux state is a very promising candidate for the
numerically observed short-range RVB state. Its critical bo-
son density decreases from 1.18 at A2 /A1=1 /2 to 0.516 at
A2 /A1=0, and a continuous quantum phase transition to Néel
order will happen in this process, emulating the behavior of
the numerically studied Hubbard model when U / t increase
from below U / t=4.3 to +�. The critical field theory for the
phase transition to Néel order is an O�4� invariant theory Eq.
�22�, with an irrelevant coupling between Higgs field and
boson fields involving cubic power of spatial derivatives,
unlike the conventional form of such coupling with only one
spatial derivative.21 Therefore it allows for a direct transition
from a Z2-gapped spin liquid to a Néel order. In this scenario
the spin liquid could have soft spin fluctuations at not only
the ordering wave vector � point but also at Brillouin-zone-
edge center M points, and six T��k�=�� points, and six other
D points �see Fig. 6�a��, which can be checked by numeri-
cally calculating the dynamical spin susceptibility. Also the
magnetic ordering transition will be an O�4� invariant theory,
the �finite-size� scaling of correlation functions can be
checked against known results,41–43 e.g., spin-spin correla-
tion function behaves as �r�−1.373 at large distance r.

The �-flux state has the critical mean field boson density
�c�2.13 �with only nearest-neighbor mean field couplings�
well above unity. Boson condensation in the �-flux state will
lead to magnetic Bragg peak at several wave vectors as show
in Fig. 6�b�, including the Néel order wave vector, which can
be checked in the numerical simulations of the magnetic or-
dered phase. But for energetic reasons it is not likely realized
in the Hubbard model.

There are still many remaining interesting questions and
possible future directions in this problem. �1� The Z2 spin
liquid on a torus will have fourfold ground-state degeneracy
which was not observed in the numerical simulation.19 It is
possible that ground states in different topological sector ac-
tually carry different physical quantum number, e.g., quan-
tum number with respect to sixfold rotation, thus not all of
them were accessed in the simulation. It would be useful to
work out these vison quantum numbers which can guide the
search of topological order in the numerical work. �2� The
critical field theory Eq. �22� is derived from the spin liquid
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side. It would be very interesting to start from the Néel-
ordered side and see if the same conclusion can be reached.
For comparison to numerics it may also be useful to compute
the scaling properties of other observables. Also the mean
field tricritical point in Fig. 1, where bosons condense at �
and six T points, might also be of some interest. �3� The
continuous Mott transition is not easy to understand with the
Schwinger boson formalism but is more natural in the fermi-
onic spinon formulation. It may be interesting to study the Z2
states with fermionic spinons, and see if a unified picture of
both continuous Mott transition and magnetic ordering tran-
sition can be achieved. �4� It may be useful to derive the
effective spin model from the Hubbard model to high orders
of t /U, then compute energetics of the zero-flux Z2 spin liq-
uid state and other possible states, in order to produce a
physical �mean field� phase diagram. �5� It may also be use-
ful to have a concrete simple spin model which shows one of
these Z2 spin liquid ground states. J1-J2 model may be a
good example but unfortunately has sign problem preventing
large scale quantum Monte Carlo simulations.

There has been a proposal of nonmagnetic insulator state
in honeycomb Hubbard model close to the metal-insulator
transition.44 Its relation to the present study is, however, un-
clear yet. Also in a recent paper by Xu and Sachdev45 an-
other Z2 spin liquid state was proposed through a different
formalism. Its relation to the Z2 spin liquid studied here re-
mains to be clarified.
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APPENDIX A: ALGEBRAIC SOLUTION OF THE Z2 PSG
ON HONEYCOMB LATTICE

In this appendix we list the detailed steps for solving the
Z2 PSGs on honeycomb lattice. The algebraic solutions will
determine all possible symmetric Z2 states within the
Schwinger boson formalism.

The lattice and its space-group generators are described in
Sec. III and illustrated in Fig. 2. All independent commuta-
tion relations between the space-group generators are

T1
−1T2T1T2

−1 = T1
−1T2

−1T1T2 = T1
−1C6T1T2

−1C6
−1 = T2

−1C6T1C6
−1

= C6
6 = T1

−1�T1�−1 = T2
−1�T1T2

−1�−1 = �2

= �C6�C6 = 1 , �A1�

where 1 is the identity element of the space group.
For reasons discussed in Sec. II we will assume the in-

variant gauge group is Z2. The generator of invariant gauge
group �IGG� is

b̂j� → − b̂j�, � = ↑,↓, ∀ site j . �A2�

For each space-group element X, associate a gauge-group
element �U�1� phase� exp�i
X�j�� such that the mean field

Hamiltonian is invariant under the combined PSG operation

bj� → exp�i
X�j��bX�j��. �A3�

Note that these phases 
X�j� and later equations of these
phases should be understood with implicit modulo 2�.

If a gauge transformation bis→ei
�i�bis is applied, then
PSG elements transform as Eq. �27� 
X�i�→
X�i�+
�i�
−
�X−1�i��. Using this gauge freedom one can always as-
sume �on open boundary condition�


T1
�x,y,w� = 0, 
T2

�x = 0,y,w� = 0, �A4�

where w=u ,v labels sublattice, �x ,y� labels unit cell.
For simplicity of notations we define two forward finite

differences �1f�x ,y�� f�x+1,y�− f�x ,y� and �2f�x ,y�
� f�x ,y+1�− f�x ,y�. From T1

−1T2T1T2
−1=1, convert each

space-group element to its corresponding PSG element, the
identity 1 to an unknown IGG element bi�→eip1�bi�, we
have

�1
T2
�x,y,w� = p1� �A5�

with integer p1=0, 1, mod 2. Later used integers p2,3,4,5,6,7,8,9
are also Z2 integers. And equations between them should be
understood with implicit modulo 2. Solution of this equation
together with Eq. �A4� is


T2
�x,y,w� = p1�x . �A6�

From this one can already conclude that the flux in the el-
ementary hexagon is p1�.

At this stage there are four remaining gauge freedoms.
These gauge transformations do not change 
T1

, 
T2
up to

IGG elements but can be used to simplify other PSG ele-
ments.

Gauge freedom I: a global phase rotation, does not change
any PSG elements

b�x,y,w�� → ei
b�x,y,w��. �A7�

This can be used to fix one of the Aij to be real positive. We
will fix A�0,0,u�→�0,0,v� to be real positive.

Gauge freedom II

b�x,y,w�� → ei�xb�x,y,w��. �A8�

Gauge freedom III

b�x,y,w�� → ei��x+y�b�x,y,w��. �A9�

Gauge freedom IV: staggered phase rotation

b�x,y,u� → e+i
b�x,y,u�, b�x,y,v� → e−i
b�x,y,v�. �A10�

From T1
−1C6T1T2

−1C6
−1=T2

−1C6T1C6
−1=1 we have

�1
C6
�x,y,w� = p1��x + y� + p2� , �A11a�

�2
C6
�x,y,w� = p1�x + p3� . �A11b�

Its solution is
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C6
�x,y,w� = 
C6

�0,0,w� + p1�
x�x + 2y − 1�

2
+ p2�x + p3�y .

�A12�

If gauge freedom II is applied, p3 becomes p3+1, therefore
p3 can always be assumed as zero. If gauge freedom III is
applied, p2 becomes p2+1, and 
C6

�0,0 ,v� becomes

C6

�0,0 ,v�+�, therefore p2 can always be assumed as zero
as well. If gauge freedom IV is applied, 
C6

�0,0 ,u� becomes

C6

�0,0 ,u�+
 and 
C6
�0,0 ,v� becomes 
C6

�0,0 ,v�−
,
therefore 
C6

�0,0 ,u� and 
C6
�0,0 ,v� can always be as-

sumed as the same. And now we have exhausted all gauge
freedoms.

From T1
−1�T1�−1=T2

−1�T1T2
−1�−1=1 we have

�1
��x,y,w� = p4� , �A13a�

�2
��x,y,w� = p1�y + p5� . �A13b�

Its solution is


��x,y,w� = 
��0,0,w� + p1�y�y − 1�/2 + p4�x + p5�y .

�A14�

From C6
6=1 we have a constraint on 
C6

�0,0 ,w�

3�
C6
�0,0,u� + 
C6

�0,0,v�� + �p1 + p2�� = p6� .

�A15�

From �2=1 we have a constraint on 
��0,0 ,w�


��0,0,u� + 
��0,0,v� + ��p1y2 + p4y� = p7� . �A16�

This ensures p4= p1 mod 2 because this equation is true for
all y.

From �C6�C6=1 we have a constraint on 
C6
�0,0 ,w�

and 
��0,0 ,w�

2
��0,0,v� + 2
C6
�0,0,u� = 2
��0,0,u� + 2
C6

�0,0,v�

= p8� . �A17�

Therefore we have


��0,0,u� − 
��0,0,v� = p9� . �A18�

And the solution of 
C6
�0,0 ,w� and 
��0,0 ,w� is


��0,0,u� = �p7 + p9��/2 mod 2� , �A19�


��0,0,v� = �p7 − p9��/2 mod 2� , �A20�


C6
�0,0,w� = �p7 + p8 + p9��/2 mod 2� �A21�

and p1+ p6+ p7+ p8+ p9=0 mod 2 thus p6 can be eliminated.
Considering all these constraints, p2= p3=0, p4= p1, and

p6= p1+ p7+ p8+ p9, we will reach the final solution of PSG
shown in the main text Eq. �13� with only five free Z2 integer
parameters p1 , p5 , p7 , p8 , p9.

APPENDIX B: REALIZATIONS OF THE Z2 PSG ON
HONEYCOMB LATTICE: MEAN FIELD ANSATZ

In this appendix we will use the solution of PSG to con-
struct symmetry allowed mean field ansatz. We will list the

PSG allowed ansatz up to fourth neighbors of the honey-
comb lattice.

The algebraic solution of PSG is very general and usually
contains many free parameters. When realized by a particular
kind of ansatz, e.g., nearest-neighbor ansatz, the number of
free parameter will be greatly reduced because there will be
further constraints on the PSG. For example, if Aij is non-
zero, and there is a nonidentity space-group element X such
that X�i�= j , X�j�= i, namely, the bond ij maps to its inverse
ji, then Aji=−Aij =exp�i
X�j�+ i
X�i��Aij, therefore 
X�j�
+
X�i�=� mod 2�. All such independent nonidentity space-
group elements X, which map ij to itself or its inverse, need
to be checked. The ansatz Aij is compatible with this PSG if
all such checks are passed. Then ansatz on all symmetry
related bonds can be generated by applying the PSG opera-
tions.

Nearest-neighbor ansatz A�ij�: assume A�0,0,u�→�0,0,v�=A1
�0. This bond under � becomes its inverse �0,0 ,v�
→ �0,0 ,u�, then 
��0,0 ,u�+
��0,0 ,v�=�, therefore p7=1.
This bond under T1

−1C6
3 becomes its inverse as well, then


C6
�0,0 ,u�+2
C6

�1,−1,v�+2
C6
�1,0 ,u�+
C6

�1,0 ,v�=�,
therefore p7+ p8+ p9=1. Also under C6�C6 it becomes its
inverse, then 
C6

�1,−1,v�+
C6
�0,0 ,u�+
��0,1 ,u�

+
��0,0 ,v�+
C6
�0,0 ,v�+
C6

�0,0 ,u�=�, therefore p1+ p5

+ p7=1. These constraints require p5= p1, p7=1, and p8
= p9 mod 2.

All nearest-neighbor ansatz on the lattice are

A�x,y,u�→�x,y,v� = + A1, �B1a�

A�x,y,u�→�x+1,y−1,v� = + �− 1�p1y�− 1�p1A1, �B1b�

A�x,y,u�→�x,y−1,v� = + A1. �B1c�

Next-nearest-neighbor ansatz A��ij��: assume second neighbor
A�0,0,u�−�0,1,u� is nonzero A2. This bond under �C6 becomes its
inverse, then 
��0,0 ,u�+
��0,1 ,u�+
C6

�1,−1,v�
+
C6

�0,0 ,v�=�, therefore p1+ p5+ p8=1. Combined with
constraints from nonzero nearest-neighbor ansatz, this gives
p5= p1, p7= p8= p9=1. So there is only one free Z2 integer p1.

All next-nearest-neighbor ansatz on the lattice are

A�x,y,u�→�x,y+1,u� = + A2, �B2a�

A�x,y,v�→�x+1,y,v� = − �− 1�p1yA2, �B2b�

A�x,y+1,u�→�x+1,y,u� = + �− 1�p1yA2, �B2c�

A�x+1,y,v�→�x+1,y−1,v� = − A2, �B2d�

A�x+1,y,u�→�x,y,u� = + �− 1�p1y�− 1�p1A2, �B2e�

A�x+1,y−1,v�→�x,y,v� = − �− 1�p1y�− 1�p1A2. �B2f�

With both nearest- and next-nearest-neighbor ansatz nonzero,
there are only one free Z2 integer p1=0 ,1 in the PSG solu-
tion so there are only two different Schwinger mean field
theories. The ansatz are pictorially shown in Figs. 3 and 4.
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They are named as the zero-flux �p1=0� and �- flux �p1
=1� states for their different gauge-invariant flux in a hexa-
gon.

Third neighbor ansatz: assume third neighbor
A�1,−1,v�−�0,1,u� is nonzero A3. This bond under � becomes
its inverse, then 
��1,−1,v�+
��0,1 ,u�=�, therefore p7
=1. Also under C6

3 it becomes its inverse, then

C6

�1,0 ,u�+
C6
�0,0 ,v�+
C6

�1,0 ,v�+
C6
�0,0 ,u�+
C6

�1,
−1, v� + 
C6

�0,1 ,u�=�, therefore p1+ p7+ p8+ p9=1. Then
A3 can be nonzero only in the zero-flux state �p1=0�.

In the zero-flux state, all third neighbor ansatz on the
lattice are

A�x+1,y−1,v�→�x,y+1,u� = + A3, �B3a�

A�x+1,y,v�→�x,y,u� = + A3, �B3b�

A�x,y,v�→�x+1,y,u� = + A3. �B3c�

Fourth neighbor ansatz: assume fourth neighbor
A�0,0,v�→�1,1,u� is nonzero A4. This bond under T2C6

3 becomes
its inverse, then


C6
�0,0,u� + 
C6

�0,1,v� + 
C6
�1,− 1,v� + 
C6

�− 1,1,u�

+ 
C6
�1,0,u� + 
C6

�0,− 1,v� + 
T2
�1,1,u� + 
T2

�0,0,v�

= � ,

therefore p7+ p8+ p9=1. This constraint is already required
by nonzero nearest-neighbor ansatz.

All fourth neighbor ansatz on the lattice are

A�x,y,v�→�x+1,y+1,u� = + �− 1�p1yA4, �B4a�

A�x,y,v�→�x,y−1,u� = + A4, �B4b�

A�x,y,v�→�x−2,y+2,u� = + �− 1�p1A4, �B4c�

A�x,y,v�→�x−2,y+1,u� = + �− 1�p1A4, �B4d�

A�x,y,v�→�x,y+2,u� = + A4, �B4e�

A�x,y,v�→�x+1,y−1,u� = + �− 1�p1yA4. �B4f�

The PSG will also impose constraints on the Bij terms in Eq.
�7�. For an example, we consider nearest-neighbor B�ij�. As-
sume B�0,0,u�→�0,0,v� is nonzero B1. This bond under � be-
comes its inverse �0,0 ,v�→ �0,0 ,u�, then exp�i�
��0,0 ,v�
−
��0,0 ,u���B1= �−1�p9B1=−B1=B1

�, therefore the argu-
ment Arg�B1

� /B1�=� mod 2�. This bond under T1
−1C6

3 be-
comes its inverse as well, then


C6
�1,− 1,v� − 
C6

�0,0,u� + 
C6
�1,0,u� − 
C6

�1,− 1,v�

+ 
C6
�1,0,v� − 
C6

�1,0,u� = 0 = Arg�B1
�/B1� .

Also under C6�C6 it becomes its inverse, then


C6
�1,− 1,v� − 
C6

�0,0,u� + 
��0,1,u� − 
��0,0,v�

+ 
C6
�0,0,v� − 
C6

�0,0,u� = 0 = Arg�B1
�/B1� .

These conditions imply that B1 must be zero.
Also consider next-nearest-neighbor B��ij��. Assume next-

nearest-neighbor B�0,0,u�−�0,1,u� is nonzero B2. This bond un-
der �C6 becomes its inverse, then


C6
�1,− 1,v� − 
C6

�0,0,v� + 
��0,1,u� − 
��0,0,u� = 0

= Arg�B2
�/B2� ,

therefore B2 must be real.
All next-nearest-neighbor B��ij�� are

B�x,y,u�→�x,y+1,u� = + B2, �B5a�

B�x,y,v�→�x+1,y,v� = + �− 1�p1yB2, �B5b�

B�x,y+1,u�→�x+1,y,u� = + �− 1�p1yB2, �B5c�

B�x+1,y,v�→�x+1,y−1,v� = + B2, �B5d�

B�x+1,y,u�→�x,y,u� = + �− 1�p1y�− 1�p1B2, �B5e�

B�x+1,y−1,v�→�x,y,v� = + �− 1�p1y�− 1�p1B2. �B5f�

APPENDIX C: DERIVATION OF THE
CONTINUUM-FIELD THEORY FOR THE

TRANSITION FROM ZERO-FLUX Z2 SPIN LIQUID
TO NÉEL ORDER

In this appendix we follow the prescription of Sachdev40

to derive the continuum-field theory from the zero-flux
Schwinger boson mean field Hamiltonian Eq. �16� close to
the transition to Néel order. The notations are slightly differ-
ent from Ref. 40. And for simplicity we omit the compact
U�1� gauge field in the derivation, which can be added in the
final result by promoting the spatial-temporal derivatives to
covariant derivatives.

Rewrite the bosons in terms of the would-be condensate
modes � at the condensation momentum k=0

b�x,y,u�� = �u��xa1 + ya2� ,

b�x,y,v�� = i�
�

���
y �v�

� �xa1 + ya2 + e1� , �C1�

where e1= �2a2−a1� /3 is the displacement of v site relative
to the u site in the same unit cell.

A gradient expansion is then performed on the real-space
terms in the mean field Hamiltonian Eq. �7�. The bipartite
mean field couplings become, up to cubic power of spatial
derivatives �sum over spin indices � ,� is implicitly as-
sumed�
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b�x,y,u�↑b�x�,y�,v�↓ − b�x,y,u�↓b�x�,y�,v�↑

= − �u��1 + �r · �r +
��r · �r�2

2
+

��r · �r�3

6
��v�

� �r� ,

�C2�

where �r= �x�a1+y�a2+e1�− �xa1+ya2�. The nonbipartite
mean field couplings are

b�x,y,u�↑b�x�,y�,u�↓ − b�x,y,u�↓b�x�,y�,u�↑

= i���
y �u���r · �r +

��r · �r�2

2
+

��r · �r�3

6
��u�

�C3�

and

b�x,y,v�↑b�x�,y�,v�↓ − b�x,y,v�↓b�x�,y�,v�↑

= i���
y �v�

� ��r · �r +
��r · �r�2

2
+

��r · �r�3

6
��v�

� ,

�C4�

where �r= �x�a1+y�a2�− �xa1+ya2�.
Plug these relations into Eq. �7� and use the zero-flux

ansatz Fig. 3 with nearest-neighbor and next-nearest-
neighbor couplings A1�0 and A2. After collecting terms up
to cubic power of spatial derivatives, the continuum limit
Lagrangian L becomes

L =� d2r
�3a2/2

��u�
� d

d�
�u� − �v�

� d

d�
�v� + 	��u�

� �u�

+ �v�
� �v�� + A1�u��3

2
+

�
j=1

3

�e j · �r�2

4
+

�
j=1

3

�e j · �r�3

12
��v�

�

+ c.c. + A2�1/6�i���
y �u���

j=1

3

�d j · �r�3��u� + c.c.

+ A2�1/6�i���
y �v�

� ��
j=1

3

�d j · �r�3��v�
� + c.c.� , �C5�

where c.c. means complex conjugate of the previous term,
�3a2 /2 is the area of honeycomb unit cell, a= �a1� is the
lattice constant; e1,2,3 are the three vectors connecting a u site
to its nearest-neighbor v sites

e1 = �2a2 − a1�/3, e2 = − �a2 + a1�/3, e3 = �2a1 − a2�/3
�C6�

and we also define for convenience

d1 = − a1, d2 = a2, d3 = a1 − a2. �C7�

Note that many terms are canceled due to the geometry, es-
pecially the first derivative terms from the A2 term cancel
because � j=1

3 �d j ·�r�=0.
Define two fields z and � from linear combinations of �u

and �v

z� = ��u� + �v��/2, �� = ��u� − �v��/2. �C8�

Plug this into Eq. �C5�, the Lagrangian becomes �spin indi-
ces � ,� are omitted�

L =� d2r
�3a2/2�2z�

d

d�
� + 2��

d

d�
z + �2	 − 3A1�z�z + �2	

+ 3A1���� + a2�A1/3��rz
� · �rz + c.c.

+ �A1/12�z���
j=1

3

�e j · �r�3�z + c.c. + �A2/3�zT�i�y�

���
j=1

3

�d j · �r�3�z + c.c.
 �C9�

Note that terms involving both field � and spatial derivatives
are omitted, as they will generate terms in the effective La-
grangian of z with fourth or higher power of spatial deriva-
tives, and the following identity has been used

�
i=1

3

�ei · �r�2 = �2/3�a2�r
2. �C10�

Integrate out the field � with large gap 2	+3A1, we get the
effective Lagrangian for z

Lz =� d2r� 8

�2	 + 3A1��3a2
��z

� · ��z +
2A1

3�3
�rz

� · �rz

+
2�2	 − 3A1�

�3a2
z�z +

A1

6�3a2
z���

j=1

3

�e j · �r�3�z + c.c.

+
2A2

3�3a2
zT�i�y���

j=1

3

�d j · �r�3�z + c.c.� . �C11�

The critical point is A1 /	=2 /3 consistent with the mean
field solution. The critical boson velocity is proportional to
A1. After a proper rescaling of � the Lagrangian can be cast
into the simple form of Eq. �22�. Note that A2 plays the role
of the Higgs field.
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